Model
Digital Document
Publisher
Florida Atlantic University
Description
Maintaining security in IoT systems depends on intrusion detection since these networks' sensitivity to cyber-attacks is growing. Based on the IoT23 dataset, this study explores the use of several Machine Learning (ML) and Deep Learning (DL) along with the hybrid models for binary and multi-class intrusion detection. The standalone machine and deep learning models like Random Forest (RF), Extreme Gradient Boosting (XGBoost), Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) were used. Furthermore, two hybrid models were created by combining machine learning techniques: RF, XGBoost, AdaBoost, KNN, and SVM and these hybrid models were voting based hybrid classifier. Where one is for binary, and the other one is for multi-class classification. These models were tested using precision, recall, accuracy, and F1-score criteria and compared the performance of each model. This work thoroughly explains how hybrid, standalone ML and DL techniques could improve IDS (Intrusion Detection System) in terms of accuracy and scalability in IoT (Internet of Things).
Member of