Ramnauth, Natasha

Relationships
Member of: Graduate College
Person Preferred Name
Ramnauth, Natasha
Model
Digital Document
Publisher
Florida Atlantic University
Description
Exosomes have gained recognition in cancer diagnostics and therapeutics. Most exosome isolation methods are time-consuming, costly and require bulky equipment, rendering them unsuitable for point-of-care (POC) settings. Microfluidics can be the key to solving these challenges. Here, we employ the development of a double filtration microfluidic device that can rapidly isolate exosomes in POC settings. The device can efficiently isolate exosomes from just 100 uL of plasma within 50 minutes. The device was compared against Polyethylene glycol (PEG) based precipitation, and findings show that both methods yield comparable exosome sizes and purity, but the device can detect exosomal miRNA earlier than PEG. Finally, a comparative analysis of membrane filters with exosomes collected from pore sizes 15 nm and 30 nm showed a similarity in exosome size and miRNA expressions, with significantly increased sample purity. These findings suggest that this device has potential in POC settings.