Model
Digital Document
Publisher
Florida Atlantic University
Description
Vegetation monitoring plays a significant role in improving the quality of life above the earth's surface. However, vegetation resources management is challenging due to climate change, global warming, and urban development. The research aims to identify and extract vegetation communities for Jupiter Inlet Lighthouse Outstanding Natural Area (JILONA) using developed Unmanned Aerial Systems (UAS) deployed with five bands of RedEdge Micasence Multispectral Sensor. UAS has a lot of potential for various applications as it provides high-resolution imagery at lower altitudes. In this study, spectral reflectance values for each vegetation species were collected using a spectroradiometer instrument. Those values were correlated with five band UAS Image values to understand the sensor's performance, also added with reflectance’s similarities and divergence for vegetation species. Pixel and Object-based classification methods were performed using 0.15 ft Multispectral Imagery to identify the vegetation classes.
Supervised Machine Learning Support Vector Machine (SVM) and Random Forest (RF) algorithms with topographical information were used to produce thematic vegetation maps. The Pixel-based procedure using the SVM algorithm generated an overall accuracy and kappa coefficient of above 90 percent. Both classification approaches have provided aesthetic vegetation thematic maps. According to statistical cross-validation findings and visual interpretation of vegetation communities, the pixel classification method outperformed object-based classification.
Supervised Machine Learning Support Vector Machine (SVM) and Random Forest (RF) algorithms with topographical information were used to produce thematic vegetation maps. The Pixel-based procedure using the SVM algorithm generated an overall accuracy and kappa coefficient of above 90 percent. Both classification approaches have provided aesthetic vegetation thematic maps. According to statistical cross-validation findings and visual interpretation of vegetation communities, the pixel classification method outperformed object-based classification.
Member of