Seliya, Naeem A.

Relationships
Member of: Graduate College
Person Preferred Name
Seliya, Naeem A.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Maintaining superior quality and reliability in software systems is of utmost importance in today's world. Early fault prediction is a proven method for achieving this. Tree based modelling is a simple and effective method that can be used to predict the number of faults in a software system. In this thesis, we use regression tree based modelling to predict the number of faults in a software module. The goal of this study is four-fold. First, a comparative study of the tree based modelling tools CART and S-PLUS. CART yielded simpler regression trees than those built by S-PLUS. Second, a comparative study of the least squares and the least absolute deviation methods of CART. It is shown that the latter yielded better results than the former. Third, a study of the possible benefits of using principal components analysis when performing regression tree modelling. The fourth and final study is a comparison of tree based modelling with other prediction techniques namely, Case Based Reasoning, Artificial Neural Networks and Multiple Linear Regression.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The key to developing high-quality software is the measurement and modeling of software quality. In practice, software measurements are often used as a resource to model and comprehend the quality of software. The use of software measurements to understand quality is accomplished by a software quality model that is trained using software metrics and defect data of similar, previously developed, systems. The model is then applied to estimate quality of the target software project. Such an approach assumes that defect data is available for all program modules in the training data. Various practical issues can cause an unavailability or limited availability of defect data from the previously developed systems. This dissertation presents innovative and practical techniques for addressing the problem of software quality analysis when there is limited or completely absent defect data. The proposed techniques for software quality analysis without defect data include an expert-based approach with unsupervised clustering and an expert-based approach with semi-supervised clustering. The proposed techniques for software quality analysis with limited defect data includes a semi-supervised classification approach with the Expectation-Maximization algorithm and an expert-based approach with semi-supervised clustering. Empirical case studies of software measurement datasets obtained from multiple NASA software projects are used to present and evaluate the different techniques. The empirical results demonstrate the attractiveness, benefit, and definite promise of the proposed techniques. The newly developed techniques presented in this dissertation is invaluable to the software quality practitioner challenged by the absence or limited availability of defect data from previous software development experiences.