Skoro Kaskarovska, Violeta

Relationships
Member of: Graduate College
Person Preferred Name
Skoro Kaskarovska, Violeta
Model
Digital Document
Publisher
Florida Atlantic University
Description
High data rate acoustic communications become feasible with the use of communication systems that operate at high frequency. The high frequency acoustic transmission in shallow water endures severe distortion as a result of the extensive intersymbol interference and Doppler shift, caused by the time variable multipath nature of the channel. In this research a Single Input Multiple Output (SIMO) acoustic communication system is developed to improve the reliability of the high data rate communications at short range in the shallow water acoustic channel. The proposed SIMO communication system operates at very high frequency and combines spatial diversity and decision feedback equalizer in a multilevel adaptive configuration. The first configuration performs selective combining on the equalized signals from multiple receivers and generates quality feedback parameter for the next level of combining.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We characterize the Multitaper Spectral Estimation method as a tool for stationary signal analysis. We compare its performance to the conventional periodogram, the parametric autoregressive and multitaper autoregressive spectral estimates. We analyze single and two frequency sinusoids with additive Gaussian white noise and autoregressive processes of orders 2, 4 and 24. We extend its application to non-stationary signals and develop the multitaper spectrogram. We test the spectrograms with simulated non-stationary autoregressive process of order 2 as the magnitude of its poles vary between 0 and 1 and the angle of the poles vary between 0 and pi. Our results show that the multitaper spectral estimate can be parameterized and is more accurate than others tested for non-sinusoidal signals. We also show applications to aero-acoustic data analysis.