Biogeochemistry

Model
Digital Document
Publisher
Florida Atlantic University
Description
The overall objective was to elucidate the effect of iron (Fe) on nitrogen (N) diagenesis in Lake Okeechobee. Somewhat counterintuitively, sediment ammonium (NH+4) inventories decreased during algal growth as dissolved organic nitrogen (DON) inventories increased. Whole core incubations were staged for denitrification experiments using isotopic N tracer. Core incubations showed the percentage of sediment N removal increase between summer (25 ± 21 %) and winter (39 ± 13 %). The amendment of Fe2+ enhanced this seasonal effect likely via dissimilatory nitrate reduction to ammonium (DNRA). The isotopic signature of N2 flux also suggested an additional, sedimentary, N2 source via Fe coupled anaerobic oxidation of ammonium (feammox). Sediment slurry incubations supported the occurrence of both DNRA and feammox, showing first that nitrate (NO3−) was converted to NH4+ via DNRA, which contributed 23-26% of overall NO3− reduction.
Fe amendment in slurries similarly stimulated the feammox process. However, aged Fe minerals accumulated linearly with N bound to Fe (Fe-N) in a subseasonal sediment time series, suggesting Fe-organic matter aggregation may lower the sediment NH4+ equilibrium concentration and benthic flux.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Shortened periods of inundation due to water management have led to the encroachment and expansion of Carolina willow (Salix caroliniana) in sawgrass (Cladium jamaicense) marsh communities. Morphologic and physiologic differences between sawgrass and willow have potential consequences for microhabitat conditions and ecosystem function such as a reduction in temperatures and light availability and changes in primary productivity. Since it is a woody shrub, willow is often assumed to exhibit higher rates of transpiration than non woody plants, which in turn can affect photosynthesis and carbon exchange and ultimately wetland water management. In this study willow was found to have higher rates of stomatal conductance (gs) and photosynthesis (Anet) than sawgrass. However, sawgrass had greater intrinsic water use efficiency (WUE) than willow. This suggests that willow is capable of greater gas exchange and carbon assimilation than sawgrass but requires more water. Understanding the implications of willow expansion will improve landscape models of wetland water and carbon exchange and inform water management decisions.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Net uptake rates of soluble reactive phosphate (SRP) of Ceratophyllum demersum and the dense periphyton mat associated with the macrophyte were calculated by measuring the disappearance of stable phosphorus (30, 50, 100, or 200 μg P/L) from the water column over a one-hour period each month for one year. Two seasonal periods were established based on average photosynthetically active radiation (PAR) and length of daylight through the year. ANOVA showed that the uptake rates were significantly affected (P < 0.05) by the amount of SRP added and were greater during the period of increased irradiance. Uptake rates continued to increase, even at spike concentrations equal to 10,000 μg P/L, indicating that maximum uptake was not achieved and that this plant complex is able to sequester even greater amounts of SRP. Estimates of the yearly uptake capabilities of the plant complex for a 525 ha wetland for the 30, 50, 100, 200 μg P/L spike treatments were 27, 55, 103, and 182 kg P/yr, respectively.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The relative rates of detrital decomposition in four vegetation communities within the Everglades' ridge-slough microtopography were evaluated during two trials. Litterbags with community-specific detritus in proportion to each community's composition were put into the four communities; namely, submerged marsh, emergent marsh, short Cladium ridge, and tall Cladium ridge. These litterbags were paired with litterbags containing control leaf litter from Chrysobalanus icaco and Salix caroliniana during the wet and dry season trials, respectively. No regional differences in decomposition were shown, but there were significant differences across communities, attributed to the initial C:N ratio of the detritus, with the fastest decomposition occurring in the deepest submerged marsh followed by emergent marsh, and the shallower ridge communities had equally slower decomposition. Additionally, both controls followed the same pattern. Thus, decomposition contributes to an active self-maintenance mechanism within the vegetation communities which ultimately helps to conserve the ridges and sloughs.