Beckler, Jordon

Person Preferred Name
Beckler, Jordon
Model
Digital Document
Publisher
Florida Atlantic University
Description
The overall objective was to elucidate the effect of iron (Fe) on nitrogen (N) diagenesis in Lake Okeechobee. Somewhat counterintuitively, sediment ammonium (NH+4) inventories decreased during algal growth as dissolved organic nitrogen (DON) inventories increased. Whole core incubations were staged for denitrification experiments using isotopic N tracer. Core incubations showed the percentage of sediment N removal increase between summer (25 ± 21 %) and winter (39 ± 13 %). The amendment of Fe2+ enhanced this seasonal effect likely via dissimilatory nitrate reduction to ammonium (DNRA). The isotopic signature of N2 flux also suggested an additional, sedimentary, N2 source via Fe coupled anaerobic oxidation of ammonium (feammox). Sediment slurry incubations supported the occurrence of both DNRA and feammox, showing first that nitrate (NO3−) was converted to NH4+ via DNRA, which contributed 23-26% of overall NO3− reduction.
Fe amendment in slurries similarly stimulated the feammox process. However, aged Fe minerals accumulated linearly with N bound to Fe (Fe-N) in a subseasonal sediment time series, suggesting Fe-organic matter aggregation may lower the sediment NH4+ equilibrium concentration and benthic flux.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Iron and manganese redox chemistry are important drivers of sulfur cycling in marine sediments. Florida Bay sediments are extremely sulfidic, having been attributed to mass mortality of seagrass and oxygen depletion in the water column. This research used conventional sediment analyses and a diagenetic model to infer the overall capacity for Florida Bay sediments to eliminate hydrogen sulfide and prevent high rates of sediment dissolved oxygen consumption via hydrogen sulfide reoxidation. Previous studies have suggested that iron is important for buffering hydrogen sulfide in Florida Bay sediments, while the results of this project show for the first time that this phenomenon is relevant only in specific locations and times of the year. However, my research indicates that Fe has the potential to sequester sulfides and minimize hypoxia in the Everglades system. Thus, under a scenario that greater amounts of Fe are delivered to Florida Bay sediments from freshwater flows under Everglades restoration, Fe could be a component of ecosystem management.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Harmful organic contaminants, such as petroleum hydrocarbons, are ubiquitous in coastal marine ecosystems around the world, a problem that will only be exacerbated with rising sea level and increased inundation of coastal urban areas. Therefore, it is necessary to understand the fate of these contaminants following their deposition on marine sediment, where they can potentially persist for long periods of time. As organic carbon remineralization rates depend on the respiration process employed by the bacteria in the sediment, it was the goal of this study to determine how the sediment redox environment, with an emphasis on Fe redox chemistry, affects the biodegradation of recalcitrant petroleum hydrocarbon compounds. While amendment of natural sediment with Fe minerals that are commonly transported to coastal areas following erosion from continental crust did successfully catalyze Fe reduction and inhibit sulfate reduction, the effect on the hydrocarbon biodegradation rate was negligible. However, inoculation of the sediment with Shewanella oneidensis, an exoelectrogenic, Fe reducing bacteria known to catalyze the degradation of hydrocarbon compounds found in crude oil, did
significantly affect the redox environment and sediment microbial communities and alter the pattern of hydrocarbon loss in the sediment over time.