Model
Digital Document
Publisher
Florida Atlantic University
Description
Working memory (WM) enables the flexible representation of information over short intervals. It is established that WM performance can be enhanced by a retrospective cue presented during storage, yet the neural mechanisms responsible for this benefit are unclear. Here, we tested several explanations for retrospective cue benefits by quantifying changes in spatial WM representations reconstructed from alpha-band (8 - 12 Hz) EEG activity recorded from human participants before and after the presentation of a retrospective cue. This allowed us to track cue-related changes in WM representations with high temporal resolution. Our findings suggest that retrospective cues engage several different mechanisms such as recovery of information previously decreased to baseline after being cued as relevant and protecting the cued item from temporal decay to mitigate information loss during WM storage. Our EEG findings suggest that participants can supplement active memory traces with information from other memory stores. We next sought to better understand these additional store(s) by asking whether they are subject to the same temporal degradation seen in active memory representations during storage. We observed a significant increase in the quality of location representations following a retrocue, but the magnitude of this benefit was linearly and inversely related to the timing of the retrocue such that later cues yielded smaller increases.
Member of