Gawlik, Dale E.

Person Preferred Name
Gawlik, Dale E.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Wetlandscape topography creates spatial variation in hydroperiod, which in turn creates spatial variation in biotic communities. Such spatiotemporal variation occurs on a large scale in some of the most productive wetlands in the world, including those of south Florida, U.S.A. Wading birds (Pelicaniformes and Ciconiiformes) are iconic, top-level consumers of such ecosystems. Infrequent drying is necessary to maintain the primary nest substrate (Salix caroliniana), and prey availability is regulated by production of prey biomass in the wet season and the subsequent concentration of prey biomass into shallow pools during the dry season. The goal of this dissertation was to explicitly model wading bird nest abundance and survival as functions of water-level fluctuations, which were spatially nested (i.e., the effects of water-level fluctuations that occurred over a large scale were measured separately from the effects of water-level fluctuations that occurred over a small scale). In Chapter 2, I modeled colony-specific effects of wetlandscape water level fluctuations on wading bird nest abundance. Modeling the response at the colony level allowed the inclusion of important parameters that cannot be measured at the wetlandscape scale. For instance, each colony had its own optimal range of lake stage, which depended on local topography. I used the models to predict cumulative nest abundance under six hydrologic scenarios that were based on potential water management actions at Lake Okeechobee. I found that increasing water levels at the lake would marginally benefit the Great Egret but would substantially reduce long-term Snowy Egret and White Ibis populations. In Chapter 3, I modelled spatiotemporal distributions of fish biomass density in Lake Okeechobee’s littoral zone as a function of hierarchically nested hydrological variables. These models were consistent with the dynamic landscape connectivity model previously described in the literature. I modified the models to predict a binomial response which could then be linked to wading bird foraging threshold. The model predictions were used to estimate the number of available patch days during the breeding season, which was highly correlated with the number of nests for the great egret (Ardea alba), the snowy egret (Egretta thula), and the white ibis (Eudocimus albus). In Chapter 4, I used spatial statistics to better understand how interannual variability in resource wave patterns in the littoral zone influenced wading bird nest abundance. I found that more birds nested in years when the drying edge of the marsh moved further across the landscape. Great egret nest survival increased also, but small heron nest survival decreased. This decrease was likely because small herons continued to nest late into the season in years with longer waves, and, as with most bird species, nests that are initiated later in the season. In Chapter 5, I compiled conventional nestling diet data from 5 wading bird species sampled in 4 wetland types from 2010 to 2020 (not every wetland type was sampled in every year). This chapter provides a comprehensive, broad description of wading bird diets in south Florida, and quantifies interspecies, spatial, and interannual variation in nestling diets. By using a model-based approach to quantify the relative biomass of prey species and prey traits in nestling diets, I provide the first diet analysis that is fully reproducible across the large sympatric range of the wading bird species in the study (great egret, snowy egret, tricolored heron [Egretta tricolor], little blue heron [Egretta caerulea], and wood stork [Mycteria americana]).
Model
Digital Document
Publisher
Florida Atlantic University
Description
I used empirical data to inform spatially- and temporally-explicit predictions of time-integrated habitat availability (TiHAB), quantify spatiotemporal patterns of resource selection by Little Blue Herons (Egretta caerulea), and evaluate foraging activity as function of resource availability and prey dynamics. Evaluating resource availability over time accounts for the magnitude and duration of resource change. This approach is useful for understanding mechanisms that underlie resource selection in dynamic environments and for guilds that are sensitive to changes in prey availability like wading birds. I found that average TiHAB varied interannually whereby gains and losses in Little Blue Heron foraging habitat at the landscape scale (1-8 km) occurred from slight differences in annual tidal cycles otherwise imperceptible with water depth data alone. Local patterns of resource selection by Little Blue Herons were temporally consistent but spatially variable across tidally influenced environments. TiHAB was the most important habitat attribute over time and space and was superior to other environmental features and prey density as a predictor of Little Blue Heron resource selection. Foraging activity did not show a clear association with probability of resource selection, but foraging metrics were best described by changes in TiHAB consistent with changes in foraging strategy. I conclude that spatiotemporal variation in resource availability reliably predicts patterns of dynamic habitat selection and supports an energy-maximizing foraging strategy for wading birds in tidally influenced habitats. This modeling framework can be applied to quantify the spatiotemporal availability of resources in real-time or under hydrologic restoration regimes and sea level rise scenarios, and track species responses to hydrologic and other environmental fluctuations.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Urbanization and land development, climate change, pollution, the spread of invasive species, and sea level rise are unprecedented challenges that have led to 25% of avian species worldwide facing an elevated risk of extinction. Under rapidly changing environmental conditions, traditional population models are not ideal because they typically assume that demographic parameters are static in order to estimate the probability of species extinction over a chosen timeframe. This assumption disregards species’ potential to adapt to environmental change; adaptations which could alter not only a species’ extinction outlook but also its legal protection status. The goal of my PhD research is to re-evaluate the risk of extinction of one threatened species, the Wood Stork (Mycteria americana), by accounting for potential adaptation in the context of planned and predicted changes in the southeastern United States. Since the 1970s, Wood Storks have shifted the timing of their breeding season, expanded their range northward and into novel habitats in urban areas, and begun consuming non-native fishes. I investigate these observations by comparing the physiology and diet of Wood Storks nesting in the historical core of their U.S. range (tree islands in the flooded Everglades marsh) with storks occupying novel habitats in urban and temperate locations. Faster growth rate, improved body condition, and increased survival by nestlings in urban areas would be evidence that colonies on the leading edge of the species’ range may be capable of sustaining growth of the whole population. In a third and final chapter, I forecast nest abundance and distribution patterns in the entirety of the U.S. range given various hydrological scenarios. Increased Wood Stork population size and stability are recovery criteria which must be met before the species can qualify for removal from the federal Endangered Species List. More broadly, understanding Wood Stork response to human development in the Everglades illuminates general patterns in avian species response to extreme changes in landscape, and could serve as a framework for proactively incorporating evolutionary potential into the framework of Endangered Species Act recovery in other species which have a high adaptive capacity.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Wetland loss and degradation have led to the development of restoration programs worldwide, many of which monitor wading bird populations as indicators of wetland quality. Therefore, efficient, standardized monitoring is integral to restoration progress. I tested the use of passive acoustic monitoring to estimate nest abundances and provisioning rates in wading bird colonies and examined regional nesting dynamics in the Florida Everglades, where a long monitoring record enables analysis of nesting patterns relative to hydrologic changes. I found that call rates can serve as indices of colony nest abundances and begging call rate and timing are indicative of provisioning events. Nesting dynamics suggested that resource availability is asynchronous between regions of the Everglades, but the degree of asynchrony varies with species. The conclusions of this study will facilitate the long-term monitoring of wading bird nesting trends, which are important measures of wetland restoration in Florida and worldwide.
Model
Digital Document
Publisher
Florida Atlantic University
Description
There is a strong conservation need to understand traits of native species that adapt to urban environments, but results have been equivocal. Wetland birds have shown a strong phylogenetic signal towards urban tolerance; however, these species have largely been ignored in urban studies. I used Wood Storks (Mycteria americana) to determine how a wetland species of conservation concern responded to human-induced landscape change in South Florida. Specifically, my study investigated 1) resource selection of storks in roadway corridors, 2) factors influencing stork prey biomass in roadside created wetlands, 3) dietary flexibility of storks in response to human-induced landscape change, and 4) the impact of urban food subsidies on natural food limitations and stork productivity. I found that storks preferred canals and roadway corridors within the urban landscape. At a finer scale, storks selected for more natural wetland vegetation even within the urban landscape cover type. These results suggest that roadway corridors even within a highly urbanized area may provide adequate foraging habitat for storks. Factors influencing stork prey biomass in roadside created wetlands varied depending on created wetland type. I found that landscape-level vegetation and the physical properties of a created wetland were more influential in permanently inundated created wetlands whereas local-scale vegetation and hydrologic conditions were most influential in ephemeral created wetlands. Storks also selected prey that were more similar to the larger-bodied fishes in created wetlands than the smaller fishes in natural wetlands. Urban nesting storks selected prey that were more characteristic of created wetlands whereas storks nesting in natural wetlands selected prey that was more characteristic of prey found in natural wetlands. These results suggested that storks may have behavioral plasticity in foraging habitat and prey selection to adapt to some degree of human-induced rapid environmental change. Additionally, storks nesting in both urban and natural wetlands had narrow diet breadths and high productivity during optimal natural wetland conditions; however, during suboptimal natural conditions, urban stork diet expanded to include anthropogenic items, leading to increased productivity. Overall, this research provides a mechanistic understanding of how a wetland species persists, and even thrives, in an urban environment.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The relationship between water-level fluctuations and wading bird nest numbers and nesting location is well documented, yet species-specific reproductive responses of wading birds to environmental drivers and nesting habitat type is poorly understood. Here, I compared the reproductive responses of two ecologically similar species, Snowy Egret and Tricolored Heron, to foraging conditions influenced by water management and examined the effect of nestling island type on the reproductive success of three wading bird species. Reproductive responses to foraging conditions were broadly similar between Snowy Egrets and Tricolored Herons, however this study revealed specific-specific differences that could lead to different population dynamics in response to management over the long-term. I also found that these two species had lower productivity at spoil islands than marsh colonies, whereas Great Egret productivity did not vary by colony type. This study demonstrates the importance of establishing species-species relationships between productivity and environmental conditions
Model
Digital Document
Publisher
Florida Atlantic University
Description
Shallow water availability coupled with anthropogenic degradation of seagrass beds limits wading bird food resources in dynamic coastal ecosystems. Identifying prey species critical to wading bird reproductive success and the environmental drivers of key prey species abundance is important for understanding how environmental stressors influence prey and change the quality of foraging patches. Little Blue Herons (Egretta caerulea) are reportedly generalists eating insects, crustaceans, and fish; however, the proportions of prey items in the diet may shift spatially and temporally from freshwater to marine systems during breeding and non-breeding periods. I investigated prey selection by Little Blue Herons in Florida at the Great White Heron National Wildlife Refuge and the western Florida Bay, during 2016 and 2017 breeding seasons by investigating prey availability at low-tide locations along mudflats compared to stomach regurgitate samples collected from Little Blue Heron chicks 1 to 4 weeks old. Little Blue Herons selected Gulf toadfish (Opsanus beta) and prawns (Farfantepenaeus spp.) from the estuarine environment, but also consumed terrestrial prey (e.g. tree crabs) suggesting Little Blue Heron foraging habitat is not restricted to tidal flats. Additionally, these results support the characterization of Little Blue Herons as a generalist. After identifying important prey species, I modeled the associations of selected prey species with submerged aquatic vegetation density and abiotic variables to better understand habitat preferences and important habitat characteristics that drive prey density. Models support total seagrass density and algal density as having the greatest effect on prey selected by Little Blue Herons. Prawn density has a strong positive association with seagrass density. Gulf toadfish (Opsanus beta) and prawns (Farfantepenaeus spp.) had strong positive association with algae while pipefish (Syngnathidae) had a strong negative association with algae suggesting algae density in seagrass meadows should be considered when assessing the quality of seagrass meadows for Little Blue Heron prey and habitat suitability. My results varied from previous studies where prawns and gulf toadfish were associated with specific seagrass species. Therefore, some Little Blue Heron prey species in south Florida may not be affected by changes in submerged aquatic vegetation community composition if submerged aquatic vegetation densities remain constant. Studies are needed that clarify the complex interactions between prey and specific habitat metrics to validate the strength of landscape scale drivers of wading bird prey densities in dynamic coastal ecosystems and to determine how these communities will respond to anthropogenic environmental change.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Geographically isolated wetlands (GIWs) within the southeastern U.S. Coastal Plain have been increasingly recognized for their importance in providing ecosystem services. These wetlands serve as valuable foraging and breeding habitat for wetland-dependent species, including wading birds. I quantified wading bird presence in GIWs in southwestern Georgia and determined the relative importance of factors influencing their use of these wetlands. I also examined the diet of a nesting colony of Little Blue Herons; a species experiencing population declines throughout most of the Southeast. I found that wetland-specific parameters were important factors in predicting wading bird use of GIWs, and wading birds utilized agricultural and natural wetlands differently depending on hydrological seasonality. Little Blue Herons were primarily consuming large anurans and anuran larvae, which are characteristic of agriculturally modified wetlands. The seasonal process of receding water levels in GIWs and subsequent concentration of
Model
Digital Document
Publisher
Florida Atlantic University
Description
In tropical wetlands, breeding wading birds rely on concentrations of aquatic
fauna during the dry season to meet increased energetic demands. Wetland
microtopography increases aquatic fauna concentration levels. Crocodilians modify the
landscape creating deep-water refugia but their role as a mechanism for aquatic fauna
concentration is unknown. I sampled alligator (Alligator mississippiensis) abundance and
slough microtopography to examine correlation between the two measures. Despite
increased microtopography in high alligator use sloughs, the differences were not
significant. Using an in situ experimental approach, I quantified the magnitude, timing,
and spatial extent of aquatic fauna concentrations within simulated alligator depressions
and the surrounding marsh. Aquatic fauna density and biomass were greater within
simulated depressions, thus enhancing wading bird foraging habitat. Further
understanding the mechanisms creating microtopography, thus enhancing wading bird habitat, is critical to facilitate restoration and prevent declines of wading bird populations
in seasonally pulsed wetlands worldwide.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Little Blue Herons, Snowy Egrets, and Tricolored Herons that nest in the
Everglades have declined sharply over the past decade, due in part to food resource
limitations. Here, I examined the diet of small herons to determine how prey
characteristics affected the fitness of small herons in the highly modified Florida
Everglades. Analysis of these diet differences showed birds nesting in 2017, a
hydrologically dryer-than average year, and a more taxonomically varied diet were
associated with nest success and improved body condition of nestlings. Over half (51%)
of the fish biomass Little Blue Herons consumed were non-native species, compared to
14% and 19% non-native fish biomass consumed by Snowy Egrets and Tricolored
Herons, respectively. Surprisingly, <7% of fish biomass available in the Everglades were
comprised of non-native fish species, suggesting that small herons, and Little Blue
Herons in particular, may be using alternative foraging habitats, to supplement their
dietary needs.