Pharmacogenetics

Model
Digital Document
Publisher
Florida Atlantic University
Description
Melanoma starts on the surface of the skin where it is easily seen. It is curable
when detected early, but can be fatal if allowed to progress and spread. Melanoma can
spread downwards through the skin, ultimately reaching the blood and lymphatic vessels,
and metastasize. Thus, one goal is to detect melanoma early before it metastasizes. A high
throughput proteomics approach has been applied to better understand the processes that
underlie tumor formation and progression. Three studies were pursued: I) proteome
comparison of the matched primary WM-115 and metastatic WM-266-4 melanoma cell
lines; II) proteome comparison between the matched melanoma Hs 895.T and fibroblast
Hs 895Sk cell lines; and III) comprehensive proteome cataloging of two metastatic
melanoma cell lines Hs 895.T and SK-MEL-2. From these studies we identified proteins
that are involved in cellular functions such as metabolism, signal transduction, and DNA
binding, as well as structural and heat shock proteins. We hypothesized about a possible
oxidative stress pathway involved in melanoma progression, initiated the creation of a
melanoma proteome database, and also identified some proteins not previously studied in melanoma (such as cyclophilin A, ADP-ribosylation factor-1, 14-3-3 zeta ATP syntase, Rho
GTPase, Plastin T, galectin 1 and 3, annex in II, enolase 1, cofilin, RhoGDI, Rap 1,
G6PG, GAPDH, TKT, HK, and nuclear chloride channel protein). These results mark a
step forward in the development of a metstatic melanoma protein database, the
understanding of the chemical pathways that are involved in metastatic melanoma
development, and identification of possible new targets for inhibitor development.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Alzheimer's disease (AD) is an increasingly common neurological disorder that mainly affects memory formation and retention. It is characterized by unique intercellular neurofibrillary tangles and extracellular beta-amyloid plaques. Histone deacetylase inhibitors (HDACi's) are competitive antagonists against histone deacetylases, causing histone acetyltransferases to acetylate the genome unregulated. This thesis investigates the use of new histone deacetylase inhibitors on recovering memory in a mouse model of Alzheimer's disease. By use of a fear conditioning paradigm, we have shown that these HDACI's increase memory in AD mice, but show either no effect or a positive effect in wild-type mice. Future experiments will investigate the efficacy of compound 966 and the spine density of hippocampal brain slices after fear conditioning trials.