Model
Digital Document
Publisher
Florida Atlantic University
Description
This dissertation proposes a utility-centric peer-to-peer (P2P) energy trading framework as an alternative to traditional net metering, aiming to resolve conflicts between distributed energy resource owners and utilities. It advocates for practical software services and dynamic payment mechanisms tailored to prosumer needs, offering an alternative to reducing net metering incentives. Additionally, it explores game theory principles to ensure equitable compensation for prosumer cooperation, driving the adoption of P2P energy markets. It also builds on demand-side payment mechanisms like NRG-X-Change by adapting it to provide fair payment distribution to prosumer coalitions. The interoperable energy storage systems with P2P trading also presented battery chemistry detection using neural network models. A fuzzy inference system is also designed to facilitate prosumers' choice in participating in P2P markets, providing flexibility for energy trading preferences. The simulation results demonstrated the effectiveness of the proposed design schemes.
Member of