Mahgoub, Imad

Person Preferred Name
Mahgoub, Imad
Model
Digital Document
Publisher
Florida Atlantic University
Description
This work presents the implementation of the the IEEE 1609.2 WAVE Security
Services Standard. This implementation provides the ability to generate a message
signature, along with the capability to verify that signature for wave short messages
transmitted over an unsecured medium. Only the original sender of the message can sign
it, allowing for the authentication of a message to be checked. As hashing is used during
the generation and verification of signatures, message integrity can be verified because a
failed signature verification is a result of a compromised message. Also provided is the
ability to encrypt and decrypt messages using AES-CCM to ensure that sensitive
information remains safe and secure from unwanted recipients. Additionally this
implementation provides a way for the 1609.2 specific data types to be encoded and
decoded for ease of message transmittance. This implementation was built to support the
Smart Drive initiative’s VANET testbed, supported by the National Science Foundation
and is intended to run on the Vehicular Multi-technology Communication Device
(VMCD) that is being developed. The VMCD runs on the embedded Linux operating
system and this implementation will reside inside of the Linux kernel.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Vehicular Ad Hoc Network (VANET) supports wireless communication among vehicles using vehicle-to-vehicle (V2V) communication and between vehicles and infrastructure using vehicle-to-infrastructure (V2I) communication. This communication can be utilized to allow the distribution of safety and non-safety messages in the network. VANET supports a wide range of applications which rely on the messages exchanged within the network. Such applications will enhance the drivers' consciousness and improve their driving experience. However, the efficiency of these applications depends on the availability of vehicles real-time location information. A number of methods have been proposed to fulfill this requirement. However, designing a V2V-based localization method is challenged by the high mobility and dynamic topology of VANET and the interference noise due to objects and buildings. Currently, vehicle localization is based on GPS technology, which is not always reliable. Therefore, utilizing V2V communication in VANET can enhance the GPS positioning. With V2V-based localization, vehicles can determine their locations by exchanging mobility data among neighboring vehicles. In this research work, we address the above challenges and design a realistic V2V-based localization method that extends the centroid localization (CL) by assigning a weight value to each neighboring vehicle. This weight value is obtained using a weighting function that utilizes the following factors: 1) link quality distance between the neighboring vehicles 2) heading information and 3) map information. We also use fuzzy logic to model neighboring vehicles' weight values. Due to the sensitivity and importance of the exchanged information, it is very critical to ensure its integrity and reliability. Therefore, in this work, we present the design and the integration of a mobility data verification component into the proposed localization method, so that only verified data from trusted neighboring vehicles are considered. We also use subjective logic to design a trust management system to evaluate the trustworthiness of neighboring vehicles based on the formulated subjective opinions. Extensive experimental work is conducted using simulation programs to evaluate the performance of the proposed methods. The results show improvement on the location accuracy for varying vehicle densities and transmission ranges as well as in the presence of malicious/untrusted neighboring vehicles.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This work presents the implementations of three adaptive broadcast protocols for vehicular ad hoc networks (VANET) using the Network Simulator 3 (Ns-3). Performing real life tests for VANET protocols is very costly and risky, so simulation becomes a viable alternative technique. Ns-3 is one of the most advanced open source network simulators. Yet Ns-3 lacks implementations of broadcast protocols for VANET. We first implement the Distance to Mean (DTM) protocol, which uses the distance to mean to determine if a node should rebroadcast or not. We then implement the Distribution-Adaptive Distance with Channel Quality (DADCQ) protocol, which uses node distribution, channel quality and distance to determine if a node should favor rebroadcasting. The third protocol, Statistical Location-Assisted Broadcast protocol (SLAB), is an improvement of DADCQ which automates the threshold function design using machine learning. Our NS-3 implementations of the three protocols have been validated against their JiST/SWANS implementations.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Vehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETworks
and represent a relatively new and very active field of research. VANETs will enable in
the near future applications that will dramatically improve roadway safety and traffic
efficiency. There is a need to increase traffic efficiency as the gap between the traveled
and the physical lane miles keeps increasing. The Dynamic Traffic Assignment problem
tries to dynamically distribute vehicles efficiently on the road network and in accordance
with their origins and destinations. We present a novel dynamic decentralized and
infrastructure-less algorithm to alleviate traffic congestions on road networks and to fill
the void left by current algorithms which are either static, centralized, or require
infrastructure. The algorithm follows an online approach that seeks stochastic user
equilibrium and assigns traffic as it evolves in real time, without prior knowledge of the traffic demand or the schedule of the cars that will enter the road network in the future.
The Reverse Online Algorithm for the Dynamic Traffic Assignment inspired by Ant
Colony Optimization for VANETs follows a metaheuristic approach that uses reports from
other vehicles to update the vehicle’s perceived view of the road network and change route
if necessary. To alleviate the broadcast storm spontaneous clusters are created around
traffic incidents and a threshold system based on the level of congestion is used to limit
the number of incidents to be reported. Simulation results for the algorithm show a great
improvement on travel time over routing based on shortest distance. As the VANET
transceivers have a limited range, that would limit messages to reach at most 1,000 meters,
we present a modified version of this algorithm that uses a rebroadcasting scheme. This
rebroadcasting scheme has been successfully tested on roadways with segments of up to
4,000 meters. This is accomplished for the case of traffic flowing in a single direction on
the roads. It is anticipated that future simulations will show further improvement when
traffic in the other direction is introduced and vehicles travelling in that direction are
allowed to use a store carry and forward mechanism.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We present an implementation of the IEEE WAVE (Wireless Access in Vehicular Environments) 1609.4 standard, Multichannel Operation. This implementation provides concurrent access to a control channel and one or more service channels, enabling vehicles to communicate among each other on multiple service channels while
still being able to receive urgent and control information on the control channel. Also
included is functionality that provides over-the-air timing synchronization, allowing
participation in alternating channel access in the absence of a reliable time source.
Our implementation runs on embedded Linux and is built on top of IEEE 802.11p, as
well as a customized device driver. This implementation will serve as a key compo-
nent in our IEEE 1609-compliant Vehicular Multi-technology Communication Device
(VMCD) that is being developed for a VANET testbed under the Smart Drive initiative, supported by the National Science Foundation.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Out of 60 million Americans suffering from sleep disorder, an estimated 18 million have sleep apnea. According to the U.S. Department of Health & Human Services, sleep apnea is a chronic condition that disrupts a patient’s sleep. While the annual cost of treating sleep apnea patients in the United States is approximately $3.18 billion (including screening costs) it is estimated that untreated sleep apnea may cause $3.4 billion in additional medical costs. A polysomnography (PSG) is an all-night sleep study which monitors various physical functions during sleep including electrical activity of the heart, brain wave patterns, eye movement, muscle tone, body movements, and breathing. It is currently, the most accurate and sophisticated test for the diagnosis of sleep-disordered breathing (SDB), but also, the most expensive. The cost of an overnight sleep study is estimated between $900 and $3,000. In addition, the PSG is not mobile and has to be administered outside a patient’s home. The Long QT Syndrome (LQTS) is a
rhythm disorder that causes erratic (unpredictable) heartbeats. The LQTS has been linked to patients with the most severe form of sleep apnea. If LQTS is left untreated, sudden
cardiac death may occur.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Future vehicles will exchange safety-critical information messages wirelessly with other vehicles on the road. We must provide secure mechanisms to validate the authenticity and integrity of these messages. The IEEE Standard 1609.2 defines the format of secure messages and identifies security algorithms and mechanism for use in Wireless Access in Vehicular Environment (WAVE). We propose an organizational structure for Central Management Entities (CMEs) to address these goals and functional requirements, and to balance the security of communications with protection of user privacy. A concern in vehicular communications is the privacy of vehicle owners. Privacy must be preserved and the user related information has to be protected from unauthorized access, while the authorities can trace the sender when there is a dispute. This thesis also presents a field operational test using IEEE 802.11a hardware. Vehicular test infrastructures can then be established in a cost effective manner to help support VANET research.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The growing demand for faster connection to the Internet service and wireless
multimedia applications has motivated the development of broadband wireless access
technologies in recent years. WiMAX has enabled convergence of mobile and fixed
broadband networks through a common wide-area radio-access technology and flexible
network architecture. Scheduling is a fundamental component in resource management in
WiMAX networks and plays the main role in meeting QoS requirements such as delay,
throughput and packet loss for different classes of service. In this dissertation work, the performance of uplink schedulers at the fixed WiMAX MAC layer has been considered, we proposed an Adaptive Hierarchical Weighted Fair Queuing Scheduling algorithm, the new scheduling algorithm adapts to changes in traffic, at the same time; it is able to heuristically enhance the performance of WiMAX network under most circumstances. The heuristic nature of this scheduling algorithm enables the MAC layer to meet the QoS requirements of the users. The performance of this adaptive WiMAX Uplink algorithm has been evaluated by simulation using MATLAB. Results indicate that the algorithm is efficient in scheduling the Base Stations’ traffic loads, and improves QoS. The utilization of relay stations is studied and simulation results are compared with the case without using relay stations. The results show that the proposed scheduling algorithm improves Quality of Service of WiMAX system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This work presents the development of the Context-Aware Hybrid Data Dissemination
protocol for vehicular networks. The importance of developing vehicular networking data
dissemination protocols is exemplified by the recent announcement by the U.S. Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) to enable vehicle-to-vehicle (V2V) communication technology. With emphasis on safety, other useful applications of V2V communication include but are not limited to traffic and routing, weather, construction and road hazard alerts, as well as advertisement and entertainment. The core of V2V communication relies on the efficient dispersion of relevant data through wireless broadcast protocols for these varied applications. The challenges of vehicular networks demand an adaptive broadcast protocol capable of handling diverse applications. This research work illustrates the design of a wireless broadcast protocol that is context-aware and adaptive to vehicular environments taking into consideration vehicle density, road topology, and type of data to be disseminated. The context-aware hybrid data dissemination scheme combines store-and-forward and multi-hop broadcasts, capitalizing on the strengths of both these categories and mitigates the weaknesses to deliver data with maximum efficiency to a widest possible reach. This protocol is designed to work in both urban and highway mobility models. The behavior and performance of the hybrid data dissemination scheme is studied by varying the broadcast zone radius, aggregation ratio, data message size and frequency of the broadcast messages. Optimal parameters are determined and the protocol is then formulated to become adaptive to node density by keeping the field size constant and increasing the number of nodes. Adding message priority levels to propagate safety messages faster and farther than non-safety related messages is the next context we add to our adaptive protocol. We dynamically
set the broadcast region to use multi-hop which has lower latency to propagate
safety-related messages. Extensive simulation results have been obtained using realistic vehicular network scenarios. Results show that Context-Aware Hybrid Data Dissemination Protocol benefits from the low latency characteristics of multi-hop broadcast and low bandwidth consumption of store-and-forward. The protocol is adaptive to both urban and highway mobility models.
Model
Digital Document
Publisher
Florida Atlantic University
Description
With the explosive growth of the Internet and other types of networks, such as cell phones and pager networks, more and more people expect to communicate with each other personally anywhere and at anytime. This thesis studies a new architecture Mobile People Architecture (MPA) proposed by MosquitoNet research group at Stanford University, which is designed to put people, rather than the devices that people use, at the endpoints of communication session. Three usage scenarios in MPA are simulated using SES/Workbench. The Response Time and the Update Cost are used to evaluate the performance of above scenarios. The advantages and disadvantages of different scenarios are also analyzed and discussed in this thesis.