Cardei, Ionut

Person Preferred Name
Cardei, Ionut
Model
Digital Document
Publisher
Florida Atlantic University
Description
Every passenger vehicle must rely on a safe and optimal trajectory to eliminate traffic incidents and congestion as well as to reduce environmental impact, and travel time. Autonomous intersection management systems (AIMS) enable large scale optimization of vehicular trajectories with connected and autonomous vehicles (CAVs). The first contribution of this dissertation is the fastest trajectory planner (FTP) method which is geared for computing the fastest waypoint trajectories via performing graph search over a discretized space-time (ST) graph (Gt), thereby constructing collision-free space-time trajectories with variable vehicular speeds adhering to traffic rules and dynamical constraints of vehicles. The benefits of navigating a connected and autonomous vehicle (CAV) truly capture effective collaboration between every CAV during the trajectory planning step. This requires addressing trajectory planning activity along with vehicular networking in the design phase. For complementing the proposed FTP method in decentralized scenarios, the second contribution of this dissertation is an application layer V2V solution using a coordinator-based distributed trajectory planning method which elects a single leader CAV among all the collaborating CAVs without requiring a centralized infrastructure. The leader vehicular agent calculates and assigns a trajectory for each node CAV over the vehicular network for the collision-free management of an unsignalized road intersection. The proposed FTP method is tested in a simulated road intersection scenario for carrying out trials on scheduling efficiency and algorithm runtime. The resulting trajectories allow high levels of intersection sharing, high evacuation rate, with a low algorithm single-threaded runtime figures even with large scenarios of up to 1200 vehicles, surpassing comparable systems.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Cyber attack is a strong threat to the digital world. So, it’s very essential to keep the network safe. Network Intrusion Detection system is the system to address this problem. Network Intrusion Detection system functions like a firewall, and monitors incoming and outgoing traffic like ingress and egress filtering fire wall. Network Intrusion Detection System does anomaly and hybrid detection for detecting known and unknown attacks. My thesis discusses about the several network cyber attacks we face nowadays and I created several Deep learning models to detect accurately, I used NSL-KDD dataset which is a popular dataset, that contains several network attacks. After experimenting with different deep learning models I found some disparities in the training accuracy and validation accuracy, which is a clear indication of overfitting. To reduce the overfitting I introduced regularization and dropout in the models and experimented with different hyperparameters.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The unmanned aerial vehicle (UAV) technology has evolved considerably in recent years and the global demand for package delivery is expected to grow even more during COVID-19 and the social distance era. The low cost of acquisition, payload capacity, maneuverability, and the ability to y at low-altitude with a very low cost of operation, make UAVs a perfect fit to revolutionize the payload transportation of small items. The large-scale adoption of drone package delivery in high-density urban areas can be challenging and the Unmanned Aircraft Systems (UAS) operators must ensure safety, security, efficiency and equity of the airspace system. In order to address some of these challenges, FAA and NASA have developed a new architecture that will support a set of services to enable cooperative management of low-altitude operations between UAS operators. The architecture is still in its conceptual stage and designing a mechanism that ensures the fair distribution of the available airspace to commercial applications has become increasingly important. Considering that, the path planning is one of the most important problems to be explored. The objective is not only to find an optimal and shortest path but also to provide a collision-free environment to the UAVs. Taking into consideration all these important aspects and others such as serving on-demand requests, flight duration limitation due to energy constraints, maintaining the safety distance to avoid collisions, and using warehouses as starting and ending points in parcel delivery, this dissertation proposes: (i) an energy-constrained scheduling mechanism using a multi-source A* algorithm variant, and (ii) a generalized path planning mechanism using a space-time graph with multi-source multi-destination BFS generalization to ensure pre-flight UAV collision-free trajectories. This dissertation also uses the generalized path planning mechanism to solve the energy-constrained drone delivery problem. The experimental results show that the proposed algorithms are computationally efficient and scalable with the number of requests and graph size.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Unmanned Aircraft Systems (UAS) have grown in popularity due to their widespread potential applications, including efficient package delivery, monitoring, surveillance, search and rescue operations, agricultural uses, along with many others. As UAS become more integrated into our society and airspace, it is anticipated that the development and maintenance of a path planning collision-free system will become imperative, as the safety and efficiency of the airspace represents a priority. The dissertation defines this problem as the UAS Collision-free Path Planning Problem.
The overall objective of the dissertation is to design an on-demand, efficient and scalable aerial highway path planning system for UAS. The dissertation explores two solutions to this problem. The first solution proposes a space-time algorithm that searches for shortest paths in a space-time graph. The solution maps the aerial traffic map to a space-time graph that is discretized on the inter-vehicle safety distance. This helps compute safe trajectories by design. The mechanism uses space-time edge pruning to maintain the dynamic availability of edges as vehicles move on a trajectory. Pruning edges is critical to protect active UAS from collisions and safety hazards. The dissertation compares the solution with another related work to evaluate improvements in delay, run time scalability, and admission success while observing up to 9000 flight requests in the network. The second solution to the path planning problem uses a batch planning algorithm. This is a new mechanism that processes a batch of flight requests with prioritization on the current slack time. This approach aims to improve the planning success ratio. The batch planning algorithm is compared with the space-time algorithm to ascertain improvements in admission ratio, delay ratio, and running time, in scenarios with up to 10000 flight requests.