Model
Digital Document
Publisher
Florida Atlantic University
Description
Knowledge of the reversible potential for corrosion reaction under condition of deep sea exposure and how this is influenced by parameters such as temperature and pressure is of importance to the understanding and design of deep sea cathodic protection systems, since this potential is used as the cathodic protection criterion. Also, if the polarized potential is more negative than the reversible potential of the hydrogen reaction, then hydrogen embrittlement may occur. Thermodynamic analysis methods are used to calculate Gibbs free energy change and reversible potential of reactions involved in cathodic protection of steel for temperatures and pressures typical of deep sea. Based on the assumptions employed it is found that the reversible potential for the iron reaction becomes less negative with depth for the first 1000m and remains approximately constant beyond this.
Member of