Dhanak, Manhar

Person Preferred Name
Dhanak, Manhar
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis investigates geomagnetic survey methodology in support of the development of a geophysical navigation system for an Autonomous Underwater Vehicle (AUV). Traditional AUV navigation methods are susceptible to cumulative errors and often rely on external infrastructure, limiting their effectiveness in complex underwater environments. This research leverages geomagnetic field anomalies as an additional navigational reference to these traditional systems, particularly in the absence of Global Positioning System (GPS) and acoustics navigation systems. Geomagnetic surveys were conducted over known shipwreck sites off the coast of Fort Lauderdale, Florida, to validate the system's ability to detect and map magnetic anomalies. Data from these surveys were processed to develop high-resolution geomagnetic contour maps, which were then analyzed for accuracy, reliability, and modeling in identifying geomagnetic features.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Design and Development of a remote attitude-measuring sensor package (RASP) for use onboard an underwater tow fish to analyze its dynamic movement while towing is described. The RASP will be used to determine the orientation, acceleration, and gyroscopic attitude of the tow fish. The collection of this data is important for understanding the trim of the tow fish under different towing conditions behind a manned surface vessel or unmanned underwater vehicle. The trim data acquired will inform the extent to which post-processing of collected three-axis electromagnetic field data would be required. The RASP has been analyzed in the laboratory with a mechanical testing rig that was designed and built to validate the accuracy and performance of the entire sensor package system. The developed package will aid in the assessment of the performance of the tow fish in field operations with the sensor package implemented on the tow fish.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The feasibility and optimization of small unmanned mobile marine hydrokinetic (MHK) energy platforms for harvesting marine current energy in coastal and tidal waters are examined. A case study of a platform based on the use of a free-surface waterwheel (FSWW) mounted on an autonomous unmanned surface vehicle (USV) was conducted. Such platforms can serve as recharging stations for aerial drones (UAVs), enabling extension of the UAVs’ autonomous operating time. An unmanned MHK platform potentially meets this need with sustainable power harvested from water currents. For the case study, six different waterwheel configurations were field-tested in the Intracoastal Waterway of South Florida in support of determining the configuration that produced the most power. Required technologies for unmanned operations of the MHK platform were developed and tested. The data from the field-testing were analyzed to develop an empirical relation between the wheel’s theoretical hydrokinetic power produced and the mechanical power harnessed by the MHK platform with various waterwheel configurations during field-testing. The field data was also used to determine the electrical power generated by the FSWW configurations during field-testing. The study has led to the development of standardized testing procedures. The empirical relation is used to examine predicted power production through scaling up different physical aspects of the waterwheel.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Modeling, implementation, field testing and control of a power takeoff (PTO) device equipped with a ball-type continuously variable transmission (B-CVT) for a small marine hydrokinetic (MHK) turbine deployed from a floating unmanned autonomous mobile catamaran platform is described. The turbine is a partially submerged multi-blade undershot waterwheel (USWW). A validated numerical torque model for the MHK turbine has been derived and a speed controller has been developed, implemented and tested in the field. The dependance of the power generated as a function of number and submergence level of turbine blades has been investigated and the number of blades that maximizes power production is determined. Bench and field testing in support of characterizing the power conversion capabilities of MHK turbine and PTO are described. Detailed results of the final torque and power coefficient models, the controls architecture, and the MHK turbine performance with varying numbers of blades are provided.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this thesis, feasibility of a concept for launch and recovery of the Remus AUV from WAM-V USV is investigated. A modular recovery system which can be added to the WAM-V payload tray was designed, and based on a review of previous literature a CONOPS was developed for the launch and recovery process. The first phase of the CONOPS, which pertains to the position of the REMUS initially on the free surface prior to sling engagement is simulated using ANSYS AQWA. Preprocessing for the simulation involved simplification of the model in ANSYS SpaceClaim to achieve a proper mesh as well as theoretical calculations of the input parameters for wave environment and point masses etc. The simulation was evaluated by taking into consideration two wave environment scenarios: beam sea’s (-90 degrees) and head seas (0 degrees). The wave environment was based on a linear frequency range for the waves which considered wavelengths that correspond to half and double the length of the WAM-V 16’. The significance of the simulation is characterized through identifying the ideal direction and wave frequency range for recovery based on the RAOs of the two vehicles.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The aim of this thesis project was to design, develop, and test, a continuously variable transmission (CVT)-based power take off (PTO) sub-system, and its controller, for a small scale marine hydrokinetic turbine (MHK) developed for low-speed tidal currents. In this thesis, a CVT based PTO and controller was developed for a predefined MHK and validated through simulations. A testing platform was subsequently developed including an emulation system to replicate the MHK for testing of the coupled MHK/PTO system. Laboratory testing of the emulation system, PTO component efficiencies, and full system with controls was then conducted. The results showed the mechanical PTO design to be a valid solution and the control methods to be marginally stable with adequate power conversion at low-speed current conditions. The results also identified future work in continued controller development, alternate PTO component testing, and continued testing in parallel with that being done on the MHK prototype.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This experiment used different methodologies and comparisons that helped to determine the direction of future research on water-based perception systems for unmanned surface vehicles (USV) platforms. This would be using a stereo-vison based system. Presented in this work is object color and shape classification in the real-time maritime environment. This was coupled with HSV color space that allowed for different thresholds to be identified and detected. The algorithm was then calibrated and executed to configure the depth, color and shape accuracies. The approach entails the characterization of a stereo-vision camera and mount that was designed with 8.5° horizontal viewing increments and mounted on the WAMV.
This characterization has depth, color and shape object detection and its classification. Different shapes and buoys were used to complete the testing with assorted colors and shapes. The main program used was OpenCV which entails Gaussian blurring, Morphological operators and Canny edge detection libraries with a ROS integration. The code focuses on the area size and the number of contours detected on the shape for successes. A summary of what this thesis entails is the installation and characterization of the stereovision system on the WAMV-USV by obtaining specific inputs to the high-level controller.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents the development a sliding mode controller and vehicle allocation to control a surface vessel platform within a high degree of accuracy. This is part of ongoing development on the WAMV platform at Florida Atlantic University to improve autonomy in marine systems. By developing models for the untested thrusters currently used, the efficacy of a Sliding Mode Controller is evaluated, and a new control allocation developed based on the gradient descent optimization method is developed to manage the thrusters’ constrained angles of thrust generation. The official simulation for the WAMV platform was then modified to include these aspects and the system was tested under wind conditions and was successful in achieving control to waypoints. The gradient descent optimization used for the control allocation did manage to increase the accuracy of both heading and position of the system at convergence. The sliding mode controller navigated to the desired waypoint however maintained oscillations of cross track that were less then 2m and heading error less 20 degrees.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Design and Development of an automated recharging station for an aerial drone, onboard a small, unmanned surface vessel, is described. Drones require a landing surface that is level within five degrees of the surrounding terrain for repeated reliable landing and takeoff. System constraints and at-sea application necessitate a compact, lightweight, and secure solution. A passive self-leveling platform and an accompanying automated parallel-pusher drone restraint mechanism have been designed and fabricated to aid in achieving a level landing surface and holding the drone in place while it charges. The self-leveling mechanism has been analyzed and subjected to initial laboratory tests. The testing of the drone restraint mechanism to verify its weight capacity and closing time, and the integration of the platform with a custom conductive contact wireless charging pad are identified as future work. The resulting cohesive unit will be tested for performance optimization and implementation onboard the unmanned surface vehicle.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this thesis is to simulate, design and build an automated device that allows unmanned vessels to anchor themselves in specified locations while being United States Coast Guard Navigation Rules compliant. This is a part of a larger project funded by the U.S. Department of Energy for Florida Atlantic University to build an unmanned platform with an Undershot Water Wheel on it. By simulating the environment of the South Florida Intercoastal Water Ways, forces acting on the line, anchor and the vessel are analyzed. These forces are used as the guide for the design and build of a line locking mechanism that takes the tension off the winch and a sensor package to monitor the environment the platform is in as well as control of the system. Based off experimental testing, the system was successful in handling all emulated environments with loads exceeding 150lbs of tension.