Cell differentiation

Model
Digital Document
Publisher
Florida Atlantic University
Description
During eye lens development the lens receives oxygen from a network of capillaries that comprise of the tunica vasculosa lentis and the anterior pupillary membrane. In development there is regression of this capillaries with the vitreous and aqueous humor, which is the lens only source of oxygen, leaving the lens in low oxygen state. The lens contains a decreasing oxygen gradient from the surface to the core that parallels the differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 alpha (HIF1a), in the regulation of genes required for lens fiber cell differentiation, structure, and transparency. Previous studies by our lab discovered the HIF1a-dependent gene expression patterns of lens genes by utilizing a Multiomics approach that integrated analysis from CUT&RUN, RNA-seq, and ATACseq. Additionally, our lab also established a hypoxia and HIF1a-dependent mechanism for the non-nuclear organelle degradation process required to form mature transparent fiber cells.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Lens differentiation begins with epithelial cells that undergo the process of cellular differentiation and remodelling into fiber cells (Bassnet et al., 2011; Menko 2002; Wride, 2011) that then will undergo terminal remodelling processes to eliminate their cellular organelles to achieve mature lens structure and transparency. We sought to determine if Serine 81, within the minimal essential region (MER) of the BNIP3L protein, is required for organelle elimination. Previous studies have shown that levels of phosphorylated P38 MAPK and ERK ½ peaked in the same region as phosphorylated S81 BNIP3L levels, the equatorial epithelium, where organelle degradation is initiated. The use of specific inhibitors of P38 MAPK (SB203580) or ERK ½ (U0126 or PD99089) and P38 MAPK activator Ansiomycin will be used to determine if P38 MAPK or ERK ½ phosphorylates BNIP3L at S81 to induce mitophagy of mitochondria, endoplasmic reticulum, and Golgi apparatus.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The ocular lens is comprised of an epithelial cell population that undergoes a continuous process of cellular remodeling and differentiation to form elongated transparent fiber cells. This lens differentiation process is hallmarked by the complete elimination of organelles at the center of the lens, elongation of lens fiber cells, and production of lens fiber-cell specific crystallin proteins to form the mature functional structure of the transparent ocular lens. To date, our understanding of the mechanisms that drive the lens differentiation process is incomplete. This dissertation sought to elucidate the potential roles of both hypoxia and epigenetic chromatin remodeling processes as novel regulators of lens differentiation.
The lens lacks a direct blood supply and thus resides in a hypoxic microenvironment. Previous studies revealed the presence of a decreasing oxygen gradient in the region of the lens where cellular remodeling and organelle elimination occur to form mature transparent lens fiber cells. Thus we hypothesized that the hypoxic environment of the lens itself, was required to induce gene expression changes to drive the lens differentiation process. We utilized a multimoics analysis combining CUT&RUN and RNAseq high-throughput sequencing technologies to identify a role for the hypoxia-inducible transcription factor HIF1a as a novel regulator of lens gene expression during lens differentiation.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The lens is responsible for focusing light into the retina. It accomplishes this through its maturation from an epithelial cell into a fiber cell. A large amount of research has been done on cellular differentiation. Nevertheless, we still lack knowledge on many different aspects of differentiation, including a complete theory on the mechanism behind differentiation. Due to the lens’ unique structure and cell types, this is an ideal model for studying differentiation. Our research has shown that αB crystallin, a small heat shock protein, is able to modulate cytochrome C levels and protect the mitochondria under oxidative stress. Also, cytochrome C release is often followed by caspase 3 activation. In addition, research has shown that low levels of caspase 3 activation is essential in driving differentiation. My work examined if αB crystallin could modulate cytochrome C to lower caspase 3 levels to allow for differentiation rather than apoptosis.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The excess generation of Reactive oxygen species (ROS) can damage
cell components and disrupt cellular functions. Methionine in proteins is easily
oxidized by ROS and converted to methionine sulfoxide. The enzyme peptide
Methionine Sulfoxide Reductase reduces methionine sulfoxide back to methionine.
We report here that MsrA over expression in rat cardiac myocytes prevents damage
from ROS and increases cell viability after hypoxic/reoxygenation events. The nonsteroidal
anti-inflamatory drug (NSAID) sulindac contains a methyl sulfoxide moiety
that can scavenge ROS. Sulindac can be reduced by MsrA and contribute as an
antioxidant in the cell. Our results demonstrate that 1 OOuM sulindac can reduce cell
death in rat cardiac myocytes during hypoxia/reoxygenation, and
ischemia/reperfusion in Langendorf[ perfusions. The BNIP proteins are pro-apoptotic
members of the Bcl-2 family of apoptosis regulating proteins. Hypoxia/acidosis
stabilizes BNIP-3 and increases its association with the mitochondria, causing the
release of cytochrome C and cell death. We report the retrograde perfusion
Langendorffmodel is inconclusive in mouse hearts.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Larval release by adult fiddler crabs occurs during the ebbing tides, but its timing
relative to the day-night and tidal amplitude cycles depends upon tidal form (e.g., shows
phenotypical plasticity). Crabs (Uca thayeri) from Florida's East Coast are exposed to
semidiurnal tides and release their larvae at night, whereas crabs from Florida's West
Coast exposed to mixed tides release their larvae during the afternoon. The purpose of
this study was to determine whether the larvae could hatch at times other than those
correlated with the tidal form at their location. Clusters of eggs at similar stages of
development, 24-72 h in advance of release, were reciprocally transferred between
females from each coast. Release ofboth the transferred larvae and maternal clutch
occurred synchronously, and at the time dictated by the female's tidal regime. These
results suggest that larvae are phenotypically plastic with respect to hatching time and
can either delay (West coast) or advance (East coast) their response to release signals
from females.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Metastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with inflammation.
Using well-established models of breast cancer, we show that CHI3L1 is increased in the serum of tumor bearing mice. We found that CHI3L1 levels are increased at both the “pre-metastatic” and “metastatic stage” and that tumor cells, splenic, alveolar and interstitial macrophages; and myeloid derived population produce CHI3L1. Furthermore, we demonstrated that CHI3L1 has an inhibitory role on the expression of interferon-gamma (IFN γ) by T cells, while enhancing the production of pro-inflammatory mediators by macrophages such as Cchemokine ligand 2 (CCL2/MCP-1), Chemokine CX motif ligand 2 (CXCL2/IL-8) and matrix metalloproteinase-9 (MMP-9), all of which promote tumor growth and metastasis. We demonstrated that in vivo treatment of tumor-bearing mice with chitin microparticles, a TH1 adjuvant and a substrate for CHI3L1, promoted immune effector functions with increased production of IFN-γ but decreased CCL2/MCP-1, CXCL2/IL-8 and MMP-9 expression by splenic and pulmonary macrophages. Significantly, in vivo administration of chitin microparticles decreased tumor growth and pulmonary metastasis in mammary tumor bearing mice. These results suggest that CHI3L1 may play a role in tumor progression. Inflammation plays a pivotal role during tumor progression and metastasis by promoting the production of pro-inflammatory molecules such as CHI3L1. However, little is known about how CHI3L1 expression can affect secondary sites to enhance metastasis. In these studies, we demonstrated that CHI3L1 alters the cellular composition and inflammatory mediators that aid in the establishment of a metastatic niche for the support of infiltrating tumor cells leading to accelerated tumor progression. Since previous studies showed that CHI3L1 modulates inflammation, we determined the role of CHI3L1 in the context of pre-existing inflammation and metastasis. We found that CHI3L1 deficient mice with preexisting inflammation had decreased pro-inflammatory mediators, and significant reduction in tumor volume and metastasis compared to wild type controls. Preexisting inflammation and CHI3L1 may be driving the establishment of a premetastatic milieu in the lungs and aiding in the establishment of metastasis. Understanding the role of CHI3L1 in inflammation during tumor progression could result in the design of targeted therapies for breast cancer patients.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Carbohydrate recognition is one of the most sophisticated recognition processes in biological
systems, mediating many important aspects of cell-cell recognition, such as inflammation, cell
differentiation, and metastasis. Consequently, lectin-glycan interactions have been intensively
studied in order to mimic their actions for potential bioanalytical and biomedical applications.
Galectins, a class of ß-galactoside-specific animal lectins, have been strongly implicated in
inflammation and cancer. Galectin-3 is involved in carbohydrate-mediated metastatic cell
heterotypic and homotypic adhesion via interaction with Thomsen-Friedenreich (TF) antigen on
cancer-associated MUC1. However, the precise mechanism by which galectin-3 recognizes TF
antigen is poorly understood. Our thermodynamic studies have shown that the presentation of the
carbohydrate ligand by MUC1-based peptide scaffolds can have a major impact on recognition,
and may facilitate the design of more potent and specific galectin-3 inhibitors that can be used as
novel chemical tools in dissecting the precise role of galectin-3 in cancer and inflammatory
diseases. Another lectin, odorranalectin (OL), has been recently identified from Odorrana grahami
skin secretions as the smallest cyclic peptide lectin, has a particular selectivity for L-fucose and
very low toxicity and immunogenicity, rendering OL an excellent candidate for drug delivery to
targeted sites, such as: (1) tumor-associated fucosylated antigens implicated in the pathogenesis
of several cancers, for overcoming the nonspecificity of most anticancer agents; (2) the olfactory epithelium of nasal mucosa for enhanced delivery of peptide-based drugs to the brain.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The ubiquitin ligase Highwire is responsible for cell-autonomously promoting
synapse formation in the Drosophila Giant Fiber system. highwire mutants show defects
in synaptic function and extra branching at the axon terminal, corresponding to transient
branching that occur in the course of giant synapse formation during metamorphosis. The
MAP kinase pathway, including Wallenda and JNK/Basket, plus the transcription factor
Jun, act to suppress synaptic function and axon pruning in a dosage sensitive manner,
suggesting different molecular mechanisms downstream of the MAP kinase pathway
govern function and pruning. A novel role for Highwire is revealed, regulating the giant
fiber axon’s ability to respond to external cues regulated by Fos. When expression of the
transcription factor Fos is disrupted in the post-synaptic TTMn or surrounding midline
glia of highwire mutants, the giant fiber axons show a marked increase in axon overgrowth and midline crossing. However, synaptic function is rescued by the cell nonautonomous
manipulation of Fos, indicating distinct mechanisms downstream of Highwire regulating synaptic function and axon morphology.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A naturally-occurring recessive lethal mutation in axolotls, Ambystoma mexicanum, is an intriguing model for studying tropomyosin expression regulation. Homozygous embryos(c/c) form hearts that are deficient in tropomyosin, lack organized myofibrils and fail to beat. Previous studies have shown that a non-coding RNA gene, MIR (Myofibril Inducing RNA), is sufficient to rescue the non-beating homozygous recessive mutant hearts by promoting sarcomeric tropomyosin expression that leads to formation of organized myofibrils and beating hearts. Real time RT-PCR reveals that mutant hearts express the same level mRNA of the alpha-tropomyosin and TM4 type tropomyosin (ATmC-3) gene as normal embryonic hearts. These genes show no differences with regard to the splicing patterns of normal and mutant. Using protease inhibitor LLnL and E-64d treatments and two-dimensional Western blots of normal and mutant hearts, it is found that mutant hearts express all tropomyosin protein isoforms as normal hearts but protein expression are at low levels. These studies suggest that there is a failure in the translational or posttranslational control mechanisms for tropomyosin protein synthesis in cardiac mutant axolotl hearts during development.